Mechanics of Sediment Transportation and Alluvial Stream Problems

R. J. GARDE
K. G. RANGA RAJU
University of Roorkee, Roorkee

WILEY EASTERN LIMITED
New Delhi • Bangalore • Bombay • Calcutta
Contents

1 INTRODUCTION

Sediment and Fluvial Hydraulics 1
Nature of Sediment Problems 2
Scope .. 8
References ... 10

2 ORIGIN AND PROPERTIES OF SEDIMENTS

Introduction .. 11
Origin and Formation of Sediments 11
Fundamental Properties of Individual Sedimentary Particles 13
Bulk Properties of Sediments 30
References ... 43

3 INCIPIENT MOTION OF SEDIMENT PARTICLES

Introduction .. 45
Competent Velocity ... 46
Lift Concept ... 49
Critical Tractive Force ... 50
General Comments on Critical Tractive Stress 64
Critical Tractive Stress of Cohesive Materials 66
References ... 67

4 REGIMES OF FLOW

Introduction .. 69
Description of Regimes of Flow 69
Ripple and Dune Regime 74
Antidune Regime ... 84
Importance of Regimes of Flow 86
Prediction of Regimes of Flow 88
Complexities of Regimes in Natural Streams 94
References ... 95

5 RESISTANCE TO FLOW AND VELOCITY DISTRIBUTION IN ALLUVIAL STREAMS

Introduction .. 98
CONTENTS

Velocity Distribution and Resistance in Turbulent Flow over Rough Boundaries 99
Resistance to Flow in Alluvial Streams 101
Velocity Distribution in Alluvial Streams 122
References 128

6 BED LOAD TRANSPORT AND SALTATION

Introduction 131
Bed Load Equations 132
Bed Load Equations Based on Dimensional Considerations 137
Semitheoretical Equations 140
General Comments on Bed Load Equations 151
Saltation 152
References 155

7 SUSPENDED LOAD TRANSPORT

Introduction 157
Mechanism of Suspension 158
General Equation of Diffusion 159
Integration of Sediment Distribution Equation 161
General Considerations about Sediment Distribution Equation 164
Assumptions in the Derivation of Sediment Distribution Equation 166
Analysis of Differences between Z_0 and Z Values 168
Prediction of Reference Concentration 169
Method of Integrating Curves of (Concentration x Velocity) 173
Relation between Sediment Discharge and Water Discharge 176
Effect of Temperature on Suspended Load Transport 179
Wash Load 180
References 183

8 TOTAL LOAD TRANSPORT

Introduction 186
Two Approaches to the Problem 186
Microscopic Methods 187
Macroscopic Methods 193
Some Approximate Methods 206
Effect of Hydraulic Conditions on Sediment Transport 209
References 210

9 SEDIMENT SAMPLERS AND SAMPLING

Introduction 212
Bed Load Sampling 213
CONTENTS

Suspended Load Sampling 221
Computation of Total Load 232
Bed Material Sampling 232
References 235

10 DESIGN OF STABLE CHANNELS

Introduction 237
Variables in Channel Design and Conditions for Design 239
Secondary Factors Influencing Stable Channel Design 240
Stable Channels Carrying Clear Water in Coarse Noncohesive Material 241
Stable Channels Carrying Sediment-Laden Water in Alluvial Material 248
General Comments on Regime and Tractive Force Methods of Channel Design 263
References 266

11 ALLUVIAL STREAMS AND THEIR HYDRAULIC GEOMETRY

Introduction 268
Geomorphic Cycle 268
Various Stages of Streams 269
Nature of Bed Material 270
Variables in Stream Problems 273
Dominant Discharge 273
Stream Slope 275
Shape of Streams 276
Stream Basin 287
References 288

12 STREAM BED VARIATION IN ALLUVIAL STREAMS

Introduction 290
Continuity Equation for Sediment 290
Equilibrium Depth of Scour in Long Channel Contractions 291
Stream Bed Changes during Floods 293
Degradation 296
Aggradation 306
Silting of Reservoirs 314
Local Scour and Methods of Prevention 325
References 341

13 VARIATION IN PLAN-FORM OF STREAMS

Introduction 345
<table>
<thead>
<tr>
<th>Secondary Currents</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow in Rigid-Boundary, Open-Channel Bends</td>
<td>349</td>
</tr>
<tr>
<td>Scour and Deposition at Alluvial Bends</td>
<td>356</td>
</tr>
<tr>
<td>Sediment Distribution in Channel Bifurcations</td>
<td>359</td>
</tr>
<tr>
<td>Meandering</td>
<td>361</td>
</tr>
<tr>
<td>Lateral Migration of Alluvial Streams</td>
<td>368</td>
</tr>
<tr>
<td>Cutoffs</td>
<td>370</td>
</tr>
<tr>
<td>Delta Formation</td>
<td>375</td>
</tr>
<tr>
<td>References</td>
<td>377</td>
</tr>
</tbody>
</table>

14 SEDIMENT CONTROL IN CANALS

- Introduction | 380 |
- Methods of Sediment Control | 381 |
- Sediment Controlling Actions | 383 |
- Details of Sediment Controlling Methods | 384 |
- Water Requirements | 401 |
- Concluding Remarks | 402 |
- References | 402 |

15 RIVER TRAINING AND BANK PROTECTION

- Introduction | 404 |
- Objectives of River Training and Bank Protection | 404 |
- General Considerations | 406 |
- River Training for Flood Control | 409 |
- River Training for Navigation | 416 |
- River Training for Guiding the Flow | 426 |
- River Training for Sediment Control | 434 |
- Stabilization of Rivers | 434 |
- References | 435 |

16 MISCELLANEOUS TOPICS

- Introduction | 437 |
- Alluvial River Models | 437 |
- Mud-Flow | 449 |
- Density Currents | 450 |
- Sediment Transport through Pipes | 459 |
- References | 467 |

AUTHOR INDEX

- 471 |

SUBJECT INDEX

- 477 |