

Clayey Barrier Systems for Waste Disposal Facilities

R. Kerry Rowe

Department of Civil Engineering, University of Western Ontario, London, Canada

Robert M. Quigley

Geotechnical Research Centre, University of Western Ontario, London, Canada

and

John R. Booker

School of Civil Engineering, University of Sydney Australia

E & FN SPON An Imprint of Chapman & Hall London · Glasgow · Weinheim · New York · Tokyo · Melbourne · Madras

Contents

	Prefac	e		1X
1	Basic	concepts		1
	1.1	Introduction		1
	1.2	Overview of barrier systems		1
	1.3	Transport mechanisms and governing equations		12
	1.4	Complicating factors		26
	1.5	Modeling the finite mass of contaminant		28
	1.6	Modeling a thin permeable layer as a boundary condition		29
	1.7	Hand solutions to some simple problems		31
	1.8	Summary		34
2	Design	a considerations		35
	2.1	Introduction		35
	2.2	Impact assessment		36
	2.3	Waste and leachate composition		38
	2.4	Leachate mounding and collection		50
	2.5	Leakage through liners		67
	2.6	Leak detection systems		72
	2.7	Landfill capping and the control of infiltration		74
	2.8	Choice of barrier system and service life considerations		76
	2.9	Geotechnical considerations		77
	2.10	Summary		81
3	Claye	y barriers: compaction, hydraulic conductivity and clay mineralogy		82
	3.1	Introduction		82
	3.2	Methods of assessing hydraulic conductivity		84
	3.3	Compaction-permeability relationships		102
	3.4	Clay mineralogy		108
	3.5	Clay colloid chemistry		115
4	Clay-	leachate compatibility by measurement of hydraulic conductivity		120
	4.1	Introduction		120
	4.2	Soil-MSW leachate compatibility		122
	4.3	Compatibility of clays with liquid hydrocarbon permeants		131
	4.4	Summary and conclusions		143

v

С	0	n	t	e	n	ts	
_	~	•••	-	-			

5	Flow	modeling	145
	5.1	Introduction	145
	5.2	One-dimensional flow models	145
	5.3	Analysis of two- and three-dimensional flow	156
	5.4	Finite difference approximation	158
	5.5	Application of the finite element method to the analysis of plane flow	159
	5.6	Boundary element methods	161
6	Chem	ical transfer by diffusion	163
	6.1	Introduction	163
	6.2	Free solution diffusion (D_0)	163
	6.3	Diffusion through soil	166
	6.4	Steady-state diffusion	167
	6.5	Transient diffusion	171
	6.6	Use of laboratory and field profiles to measure diffusion coefficient D_e	174
	6.7	Diffusion during hydraulic conductivity testing for clay-leachate compatibility	175
	6.8	Summary and conclusions	176
7	Conta	minant transport modeling	178
	7.1	Introduction	178
	7.2	Analytical solutions	180
	7.3	Application of Laplace transforms to develop a finite layer solution for a single layer	185
	7.4	Contaminant transport into a single layer considering a landfill of finite mass and an underlying aquifer	187
	7.5	Finite laver analysis	189
	7.6	Contaminant migration in a regularly fractured medium	197
8	Deterr	nination of diffusion and distribution coefficients	201
	8.1	Introduction	201
	8.2	Obtaining diffusion and partitioning/distribution coefficients: basic concepts	201
	8.3	Example tests for obtaining diffusion and distribution coefficients for inorganic	204
	84	Dispersion at low velocities in clavey soils	213
	8.5	Effective porosity	214
	86	Distribution coefficients and nonlinearity	214
	87	Effect of leachate composition interaction and temperature	216
	8.8	Diffusion and sorption of organic contaminants	219
	89	Use of field profiles to estimate diffusion coefficients	220
	8.10	Summary and conclusions	221
9	Field s	tudies of diffusion and hydraulic conductivity	229
10	9.1	Introduction	229
	9.2	Examples of long-term field diffusion	229
	9.3	Examples of short-term field diffusion	233
	9.4	Hydraulic conductivity of contaminated clay liners	240

vi

Contents	Co	nte	nts
----------	----	-----	-----

10	Conta	minant migration in intact porous media: analysis and design considerations	246
	10.1	Introduction	246
	10.2	Mass of contaminant, the reference height of leachate, H_r , and the	
		equivalent height of leachate, H _f	246
	10.3	Development of a contaminant plume	255
	10.4	Effect of base velocity	257
	10.5	Effect of horizontal dispersivity in an underlying aquifer	258
	10.6	Effect of thickness of an aquifer beneath the barrier	259
	10.7	Effect of landfill size on potential impact	260
	10.8	1 ¹ / ₂ -D versus 2-D analysis and modeling of the aquifer beneath a liner	261
	10.9	Effect of sorption	263
	10.10	Effect of liner thickness	264
	10.11	Effect of Darcy velocity in the barrier and design for negligible impact	264
11	Migra	tion in fractured media: analysis and design considerations	268
	11.1	Introduction	268
	11.2	Numerical considerations	270
	11.3	Lateral migration through fractured media	272
	11.4	Vertical migration through fractured media and into an underlying aquifer	290
	11.5	Summary	303
12	Integra	ation of hydrogeology and engineering in the design of barriers and assessment	
	of imp	act	305
	12.1	Introduction	305
	12.2	Hydraulic conductivity of aquitards	305
	12.3	Some considerations in the design of highly engineered systems	317
	12.4	Effect of an engineered facility on groundwater levels (shadow effect)	326
	12.5	Service life of collection systems, leachate monitoring and trigger levels	328
	12.6	Contaminating lifespan and finite mass of contaminant	329
	12.7	Failure of underdrain systems	335
	12.8	Modeling the service life of primary and secondary systems	347
	12.9	Summary	348
App	endix	A Glossary	350
App	endix	B Notation	361
App	endix	C Specific solution for matrix diffusion: one-dimensional, two-dimensional or	
		three-dimensional conditions	366
Refe	erences		369
Aut	hor inc	lex	382
Sub	bubject index		