

TECHNICAL ENGINEERING AND DESIGN GUIDES AS ADAPTED FROM THE US ARMY CORPS OF ENGINEERS, No. 1

American Society of Civil Engineers 345 East 47th Street

New York, New York 10017-2398

TABLE OF CONTENTS

Chapter 1. Introduction

- 1-1 Purpose
- 1-2 Applicability1-3 References, Bibliographical and Related
- 1-4 Definitions

Chapter 2. General Consideration

- 2-1 General
- 2-2 Structural and Geotechnical Coordinati
- 2-3 Design Considerations
- 2-4 Nature of Loadings
- 2-5 Foundation Material
- 2-6 Identification and Evaluation of Pile Alte
- 2-7 Field Responsibilities for the Design Eng
- 2-8 Subsurface Conditions
- 2-9 Pile Instrumentation

Chapter 3. Geotechnical Consider

- 3-1 Subsurface Investigations and Geology
- 3-2 Laboratory and Field Testing
- 3-3 Foundation Modification
- 3-4 Groundwater Studies
- 3-5 Dynamic Considerations
- 3-6 Pile Load Test
- 3-7 Selection of Shear Strength Parameters

Chapter 4. Analysis and Design

- 4-1 General
- 4-2 Design Criteria
- 4-3 Pile Capacity
- 4-4 Settlement
- 4-5 Pile Group Analysis
- 4-6 Design Procedure
- 4-7 Special Considerations

	1 1
d Material	1 2
ns	
ion	3 3 3 4
ternatives gineer	5 7 8 8
rations	9 9 9 10
. Set & some	10 11
	13 13 17 23 26 31 34

99

Chapter 5. Engineering Considerations Pertaining to Construction

5-1	General	38
5-2	Construction Practices and Equipment	38
5-3	Pile Driving Studies	48
5-4	Control of Pile Driving Operations	50
5-5	Results of Corps Experiences	52
5-6	As-Built Analysis	53
5-7	Field Evaluation	54

Chapter 6. Field Pile Tests

6-1	General	56
6-2	Decision Process	56
6-3	Axial Load Test	57
6-4	Monotonic Lateral Load Test	

Appendices

A-1 Appendix A.	References	(53
B-1 Appendix B.	Bibliographical and Related Material	New I have not and basis	54
C-1 Appendix C.	Case History—Pile Driving at Lock		
and Dam No. 1 Re	ed River Waterway	Subwittees Conditions	57
D-1 Appendix D.	Pile Capacity Computations	File Instrumentation	30

Index

REFERENCES

APPENDIX A

A-1. References are US Army Corps of **Engineers Directives**

- 1. TM 5-849-1, "Pile Driving Equipment."
- 2. EM 385-1-1, "Safety and Health Requirements Manuals."

REFERENCES

- 3. EM 1110-2-1902, "Stability of Earth and Rock Fill Dams CH 1."
- 4. EM 1110-2-1906, "Laboratory Soils Testing CH 1-2."
- 5. EM 1110-2-1910, "Inspection of Earthwork Construction."

DESIGN OF PILE FOUNDATIONS

APPENDIX B

BIBLIOGRAPHICAL AND RELATED MATERIAL

B-1. Corps of Engineers Publications. All related publications are available on interlibrary loan from the Research Library, US Army Engineer Waterways Experiment Station, Attn: CEWES-IM-MI-R, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199.

- Brown, D. A., and Reese, L. C. 1988 (Feb). "Behavior of a Large-Scale Pile Group Subjected to Cycle Lateral Loading," Miscellaneous Paper GL-88-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- CASE Task Group on Pile Foundations. 1980 (Dec). "Basic Pile Group Behavior," Technical Report K-80-5, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- CASE Task Group on Pile Foundations. 1983 (Sep). "Basic Pile Group Behavior," Technical Report K-83-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Dawkins, William P. 1984. "User's Guide: Computer Program for Soil-Structure Interaction Analysis of Axially Loaded Piles (CAXPILE)," Instruction Report K-84-4, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Hartman, Joseph P., Jaeger, John J., Jobst, John J., and Martin, Deborah K. 1989 (Jul).
 "User's Guide: Pile Group Analysis (CPGA) Computer Program," Technical Report ITL-89-3, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Jaeger, John J., Jobst, John J., and Martin, Deborah K. 1988 (Apr). "User's Guide: Pile Group Graphics (CPGG) Computer Program," Technical Report ITL-88-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Martin, D. K., Jones, H. W., and Radhakrishnan, N. 1980 (Jun). "Documentation for LMVDPILE Program," Technical Report K-80-3, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Morrison, C. S., and Reese, L. C. 1988 (Feb). "A Lateral-Load Test of Full-Scale Pile Group in Sand," Miscellaneous Paper GL-88-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

- Mosher, R. L. 1984 (Jan). "Load-Transfer Criteria for Numerical Analysis of Axially Loaded Piles in Sand, Part 1: Load-Transfer Criteria," Technical Report K-84-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Mosher, R. L. 1987. "Comparison of Axial Capacity of Vibratory-Driven Piles to Impact-Driven Piles," Technical Report ITL-87-7, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Mudd, T. J. 1971. "Analysis of Pile Foundation," Paper presented at Structures Conference, Lower Mississippi Valley Division, 23-24 Sep 1969, Vicksburg, MS.
- Ochoa, M., and O'Neill, M. W. 1988 (Jun). "Lateral Pile-Group Interaction Factors for Free-Headed Pile Groups in from Full-Scale Experiments," Miscellaneous Paper GL-88-12, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Radhakrishnan, N., and Parker, F. 1975 (May). "Background Theory and Documentation of Five University of Texas Soil-Structure Interaction Computer Programs," Miscellaneous Paper K-75-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Reese, L. C., Cooley, L. A., and Radhakrishnan, N. 1984 (Apr). "Laterally Loaded Piles and Computer Program COM624G," Technical Report K-84-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Smith, William G., and Mlakar, Paul F. 1987 (Jun). "Lumped Parameter Seismic Analysis of Pile Foundations," Report No. J650-87-008/2495, Vicksburg, MS.
- Strom, Ralph, Abraham, Kevin, and Jones, H. Wayne. 1990 (Apr). "User's Guide: Pile Group—Concrete Pile Analysis Program (CPGC) Computer Program," Instruction Report ITL-90-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Tucker, L. M., and Briaud, J. 1988. "Axial Response of Three Vibratory and Three Impact Driven H-Pile in Sand," Miscellaneous Paper

GL-88-28, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

 US Army Engineer Waterways Experiment Station. 1987 (May). "User's Guide: Concrete Strength Investigation and Design (CASTR) in Accordance with ACI 318-83," Instruction Report ITL-87-2, Vicksburg, MS.

B-2. Other Publications. All related publication are available on interlibrary loan from the Research Library, US Army Engineer Waterways Experime Station, Attn: CEWES-IM-MI-R, 3909 Halls Fer Road, Vicksburg, MS 39180-6199.

- American Concrete Institute. 1983. "Building Code Requirements for Reinforced Concrete," ACI 318-83, Detroit, MI.
- 20. American Concrete Institute. 1986. "Recommen dations for Design, Manufacture and Installation of Concrete Piles," ACI 543R-74, Detroit, MI.
- American Institute of Steel Construction. 1989. Manual of Steel Construction, 9th ed., New York.
- 22. American Society for Testing and Materials. 1974. "Method for Establishing Design Stresses for Round Timber Piles," D2899-74, Vol 04.09, Philadelphia, PA.
- American Society for Testing and Materials. 1978. "Method of Testing Individual Piles Under Static Axial Tensile Load," D3689-78, Vol 04.08, Philadelphia, PA.
- American Society for Testing and Materials. 1981. "Method of Testing Piles Under Lateral Loads," D3966-81, Vol 04.08, Philadelphia, PA.
- 25. American Society for Testing and Materials. 1983. "Method of Testing Piles under Static Axial Compressive Load," D1143-81, 1986 Annual Book of ASTM Standards, Vol 04.08, Philadelphia, PA.
- Aschenbrenner, T. B., and Olson, R. E. 1984 (Oct). "Prediction of Settlement of Single Piles in Clay," Analysis and Design of Pile Foundations, American Society of Civil Engineers, J. R. Meyer, Ed.
- Bowles Foundation Analysis and Design. 1977.
 2nd ed., McGraw-Hill, New York.
- Coyle, H. M., and Reese, L. C. 1966 (Mar). "Load-Transfer for Axially Loaded Piles in Clay," Journal, Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol 92, No. SM2, pp 1–26.
- 29. Coyle, H. M., and Sulaiman, I. H. 1967 (Nov).

	65
eri-	"Skin Friction for Steel Piles in Sand," Journal, Soil Mechanics and Foundations Division, Ameri- can Society of Civil Engineers, Vol 93, No. SM- 6, pp 261–278.
ons	 Davisson, M. T. 1970. "Lateral Load Capacity of Piles," Highway Research Record No. 333, Highway Research Board, National Academy of Sciences-National Research Council, Washing- ton, DC.
rch ent rry	 Deep Foundations Institute. 1979. "A Pile Inspectors Guide to Hammers," Equipment Appli- cations Committee, Springfield, NJ.
	 Deep Foundations Institute. 1981. "Glossary of Foundation Terms," Equipment Applications Committee, Springfield, NJ.
n- n	 Department of the Navy. 1982 (May). "Founda- tions and Earth Structures." NAVFAC DM-7.2, Naval Facilities Engineering Command, 200 Stovall St., Alexandria, VA.
5	 Federal Highway Administration. 1985. "Manual on Design and Construction of Driven Pile Foundations," Demonstration Projects Division and Construction and Maintenance Division, Washington, DC.
r	 Garlanger, J. H. 1973. "Prediction of the Down- drag Load at Culter Circle Bridge," Symposium on Downdrag of Piles, Massachusetts Institute of Technology.
	36. Hetenyi, M. 1946. Beams on Elastic Foundation, The University of Michigan Press, Ann Arbor, MI

- Hrennikoff, A. 1950. "Analysis of Pile Foundation with Batter Piles," *Transactions*, American Society of Civil Engineers, Vol 115, No. 2401, pp 351–383.
- Kraft, L. M., Focht, J. A., and Amerasinghe, S. F. 1981 (Nov). "Friction Capacity of Piles Driven Into Clay," *Journal, Geotechnical Engineering Division, American Society of Civil Engineers,* Vol 107, No. GT11, pp 1521–1541.
- Matlock, H. 1970. "Correlations for Design of Laterally Loaded Piles in Soft Clay," Paper No. OTC 1204, Proceedings, Second Annual Offshore Technology Conference, Houston, TX, Vol 1, pp 577–594.
- Meyerhof, G. G. 1976 (Mar). "Bearing Capacity and Settlement of Pile Foundations," *Journal, Geotechnical Engineering Division, American* Society of Civil Engineers, Vol 102, No. GT3, pp 197–228.
- Nathan, Noel D. 1983 (Mar/Apr). "Slenderness of Prestressed Concrete Columns," *PCI Journal*, Vol. 28, No.2, pp 50–77.

- Novak, M. 1984 (Nov). "Dynamic Stiffness and Damping of Piles," *Canadian Geotechnical Journal*, Vol 11, No. 4, pp 574–598.
- Novak, M., and Grigg, R. F. 1976 (Nov).
 "Dynamic Experiments With Small Pile Foundations," *Canadian Geotechnical Journal*, Vol 13, No. 4, pp 372–385.
- 44. O'Neill, M. W. 1964. "Determination of the Pile-Head, Torque-Twist Relationship for a Circular Pile Embedded in a Clay Soil," M.S. thesis, University of Texas, Austin, TX.
- 45. O'Neill, M. W., and Tsai, C. N. 1984 (Nov). "An Investigation of Soil Nonlinearity and Pile-Soil-Pile Interaction in Pile Group Analysis," Research Report No. UHUC 84-9, Department of Civil Engineering, University of Houston, prepared for US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Peck, R. B., Hanson, W. E., and Thornburn, T. H. 1974. Foundation Engineering, Wiley, New York.
- PCI Committee on Prestressed Concrete Columns. 1988 (Jul-Aug). "Recommended Practice for the Design of Prestressed Concrete Columns and Walls," Vol 33, No. 4, pp 56–95.
- 48. Poulas, H. G., and Davis, E. H. 1980. Pile Foundation Analysis and Design, Wiley, New York.
- 49. Prakash, S. 1981. Soil Dynamics, McGraw-Hill, New York.
- Reese, L. C. 1975 (Mar). "Laterally loaded Piles," Design, Construction, and Performance of Deep Foundations Lecture Series, University of California, Berkeley.
- Reese, L. C., Cox, W. R., and Koop, F. D. 1974. "Analysis of Laterally Loaded Piles in Sand," Paper No. OTC 2090, *Proceedings*, Sixth Offshore Technology Conference, Houston, TX, Vol 2, pp 473–483.
- 52. Reese, L. C., Cox, W. R., and Koop, F. D. 1975. "Field Testing and Analysis of Laterally

Loaded Piles in Stiff Clay," Paper No. OTC 2312, *Proceedings*, Seventh Offshore Technology Conference, Houston, TX, pp 671–690.

- Reese, L. C., and Welsh, R. C. 1975 (Jul). "Lateral Loading of Deep Foundations in Stiff Clay," Journal, Geotechnical Engineering Division, American Society of Civil Engineers, Vol 101, No. GT7, pp 633–649.
- Saul, William E. 1968 (May). "Static and Dynamic Analysis of Pile Foundations," *Journal, Structural Division,* American Society of Civil Engineers, Vol 94, No. ST5.
- 55. Scott, F. S. 1981. Foundation Analysis, Prentice-Hall, Englewood Cliffs, NJ.
- Semple, R. M., and Rigden, W. J. 1984 (Oct).
 "Shaft Capacity of Driven Pile in Clay," Analysis and Design of Pile Foundations, American Society of Civil Engineers, J. R. Meyer, Ed., pp 59–79.
- Stoll, U. W. 1972 (Apr). "Torque Shear Test of Cylindrical Friction Piles," *Civil Engineering*, American Society of Civil Engineers, Vol 42, pp 63–65.
- 58. Teng, W. C. 1962. Foundation Design, Prentice-Hall, Englewood Cliffs, NJ.
- 59. Terzaghi, Z., and Peck, R. B. 1967. Soil Mechanics in Engineering Practice, Wiley, New York.
- 60. Vesic, A. S. 1977. "Design of Pile Foundations," National Cooperative Highway Research Program, Synthesis of Highway Practice No. 42, Transportation Research Board, Washington, DC.
- Vijayrergiya, V. N. 1977 (Mar). "Load Movement Characteristics of Piles," Ports '77, Proceedings, 4th Annual Symposium of the Waterways, Port, Coastal and Ocean Division of American Society of Civil Engineers, Vol 2, pp 269–284.

