Order Number 8903737

Computer simulation modeling of the growth and development of the potato crop under different water regimes

> Pinto, Pedro Jorge Cravo Aguiar, Ph.D. University of California, Davis, 1988

> > U·M·I
> > 300 N. Zeeb Rd.
> > Ann Arbor, MT 48106

Table of contents

1.	Introduction1
2.	The quantification of crop-environment relationships5
2.1.	Weather variability in the origins of agriculture?5
2.2.	The empirical recognition of weather variability
	on food production6
2.3.	The first organized observations6
2.4.	The first quantitative measurements
2.4.1.	Reaumur's degree-day7
2.4.2.	Humboldt's vegetation types7
2.4.3.	Plant distribution with temperature
2.5.	Assessment of climatic potential8
2.5.1.	Climatic classifications8
2.5.2.	Azzi's meteorological equivalents9
2.5.3.	Agroclimatic indices
2.5.3.1.	Environmental Potential Index (EPI)10
2.5.3.2.	Climatic normals10
2.6.	Crop productivity assessment11
2.6.1.	Growing Degree Day12
2.6.1.1.	MGDD - Modified Growing Degree Day12
2.6.1.2.	Nuttonson's photo-thermal unit (PTU)12
2.6.1.3.	Other temperature-related indices13
2.6.2.	Biometeorological time
2.6.3.	Stress-Degree day14
2.6.4.	Modeling methods15

2.6.4.1.	Deterministic approach	16
2.6.4.2.	Stochastic approach	16
2.6.4.3.	The systems approach	19
2.6.4.3.1.	Dynamic simulation modeling	20
3.	Overview of the POTATO model	23
3.1.	Canopy climate	26
3.2.	Plant water balance	27
3.3.	Plant photosynthesis	27
3.4.	Growth and development	28
3.5.	Carbon balance and distribution	30
4.	The POTATO model version 2.0	34
4.1.	Overview of model organization	36
4.2	Simulation of canopy weather	39
4.2.1.	Calculation of air temperature	39
4.2.2.	Calculation of soil temperature	42
4.2.3.	Calculation of hourly solar radiation	46
4.2.3.1.	Radiation partitioning between crop and soil	
	surface absorption	50
4.3.	The soil-plant water balance	54
4.3.1.	Infiltration	58
4.3.2.	Evapotranspiration	59
4.3.2.1.	Partitioning of evapotranspiration	61
4.3.2.1.1.	Soil evaporation	65
4.3.2.1.2.	Transpiration	69
4.3.2.2.	Water uptake by roots	70

4.4.	The fibrous root growth submodel	75
4.4.1.	Root growth submodel in POTATO.1	76
4.4.2.	Simulation of root growth	78
4.4.2.1.	Rooting depth	79
4.4.2.2.	Root growth within a layer	79
4.4.2.3.	Root growth into other layers	81
4.4.2.4.	Root suberization	82
4.4.3.	Root uptake capacity. The effective	
	length of fibrous roots	83
4.5.	Other modifications in POTATO.2	86
4.5.1.	Irrigation management	86
4.5.2.	Mother tuber contribution to the growing	
	potato plant	87
4.5.3.	The effect of reduced transpiration on	
	photosynthesis rate	89
4.5.4.	Mass balance checks	91
4.5.5.	Model output	91
5.	Performance of the model	93
5.1.	Model validation	93
5.1.1.	Wolfe's field study	93
5.1.2.	Comparison with field results	97
5.1.2.1.	Total plant and tuber dry weights	97
5.1.2.2.	Stem and leaf dry weight	100
5.1.2.3.	Leaf area index	100
5.1.2.4.	Harvest index	103

5.1.2.5.	Water-use efficiency	103
5.2.	Behavior analysis	104
5.2.1.	Root growth	105
5.2.1.1.	Root distribution profiles	106
5.2.2.	Water uptake	109
5.2.2.1.	Water uptake profiles	109
5.2.2.2.	Seasonal patterns of water uptake	112
5.2.3.	Soil water content	112
5.2.4.	Evapotranspiration	115
5.2.5.	Net photosynthesis	115
5.2.6	Control variables	118
5.2.7.	Organ initiation	118
5.2.8.	Hourly behavior	120
5.2.9.	Model behavior with variations in plant density	123
6. L	Itilization of the model	132
6.1.	Optimal density	132
6.2.	Irrigation scheduling	133
6.3.	Relationship between water use and plant density	136
7. C	onclusions	138
7.1.	Positive conclusions	138
7.2.	Future directions	140
8. R	eferences	141
Annex A.1.	Dictionary of variables used in POTATO.2	159
Annex A.2.	POTATO.2 program listing	179
Anney A 3	Standard input files	247

List of figures

Fig. 3.1 - The POTATO.1 computer program overview	26
Fig. 3.2 - BACROS rules of assimilate partitioning	32
Fig. 3.3 - The effect of RWCPL and PRES on growth	32
Fig. 3.4 - Relational diagram between leaf and root growth	33
Fig. 4.1 - Variation of total and tuber DW with plant density	35
Fig. 4.2 The POTATO.2 computer program overview	38
Fig. 4.3 - Simulated hourly air temperature	42
Fig. 4.4 - Simulated air and soil temperature at various depths	45
Fig. 4.5 - Simulated soil temperature profile at different times	45
Fig. 4.6 - Incoming shortwave radiation as a function of solar height	49
Fig. 4.7 - Hourly fractions of solar radiation on two contrasting	
seasons	50
Fig. 4.8 - Fractions of total solar radiation absorbed by the plant	
canopy and the soil surfaces on overcast days	54
Fig. 4.9 - Van Keulen's simplified model of soil water distribution	59
Fig. 4.10 - Plant cover as a function of CMLAI	63
Fig. 4.11 - The relationship between air temperature and vapor	
pressure	64
Fig. 4.12 - GFUNCT as a function of crop height	64
Fig. 4.13 - HFUNCT as a function of windspeed	64
Fig. 4.14 - Fractions of the drying power of the air absorbed	
by the canopy and the soil	68
Fig. 4.15 - The effect of drought on soil evaporation as a function	
of time from last rain or irrigation	68

Fig. 4.16 - Contribution of each soil layer to surface evaporation	69
Fig. 4.17 - The effect of plant water content on transpiration	73
Fig. 4.18 - The effect of soil temperature on water uptake rate	73
Fig. 4.19 - Water uptake reduction as a function of soil water	
content	74
Fig. 4.20 - The effect of root dry weight on root growth in POTATO.1	78
Fig. 4.21 - The effective length of fibrous roots as a function of	
root dry weight	78
Fig. 4.22 - The dependence of the developmental rate of	
fibrous roots on soil temperature	84
Fig. 4.23 - The effect of soil temperature on fibrous root growth	84
Fig. 4.24 - The effect of soil water content on fibrous root growth	84
Fig. 4.25 - The effect of maturation on fibrous root growth	85
Fig. 4.26 - The effect of temperature on fibrous root length growth	85
Fig. 4.27 - The effect of temperature on suberization rate	85
Fig. 4.28 - The effect of mother tuber reserves on the plant	
assimilate-reserve status in POTATO.1	88
Fig. 5.1 - Time course of radiation and temperature at Davis during	
the simulation period	96
Fig. 5.2 - Pan evaporation, rainfall and irrigation data	96
Fig. 5.3 - Simulated vs. observed total plant and tuber dry weights	
for the Kennebec and White Rose cultivars and the three	
irrigation treatments (100 ET, 68ET and 33ET)	99

Fig. 5.4 - Simu	lated and observed stem+leaf dry weight for the	
Ken	nebec and White Rose cultivars and the three	
irri	gation treatments	101
Fig. 5.5 - Simul	lated and observed leaf area indices for the	
Ken	nebec and White Rose cultivars and the three	
irri	gation treatments	102
Fig. 5.6 - Simul	lated and observed harvest indices for the two	
cult	tivars and the two extreme irrigation treatments	104
Fig. 5.7 - Simul	lated and observed pattens of water-use	
effi	ciency for the two extreme irrigation treatments	
of t	ooth cultivars	104
Fig. 5.8 a) Sin	mulated root length ratio (W/L) and total root dry	
wei	ight for the three irrigation treatments of the	
Ken	nebec cultivar. b) Simulated ratios of percent	
cov	er over effective root length per unit area	106
Fig. 5.9 Effect	ive root length distribution profiles for Kennebec	
and	White Rose with the three irrigation treatments on	
sele	ected days	108
Fig. 5.10 - Sim	ulated daily soil water uptake profiles for Kennebec	
wit	h all irrigation treatments	110
Fig. 5.11 - Simi	ulated daily soil water uptake profiles for	
Wh	ite Rose with all irrigation treatments	111
Fig. 5.12 - Simi	ulated seasonal patterns of daily water uptake rate	
for	the 100% ET importion treatment (Vanaches at)	112

Fig.	5.13 - Simulated seasonal patterns of daily water uptake rate
	for the 33% ET irrigation treatment (Kennebec cv.)
Fig.	5.14 - Simulated variation in soil water content at different
	depths for the 100% ET irrigation treatment114
Fig.	5.15 - Simulated variation in soil water content at different
	depths for the 33% ET irrigation treatment114
Fig.	5.16 - Simulated seasonal time course of daily evapotranspiration
	for the three irrigation treatments116
Fig.	5.17 - Simulated seasonal time course of net photosynthesis rates
	for the three irrigation treatments117
Fig.	5.18 - Simulated seasonal time course of relative water content
	of the plant and assimilate-reserve status for the two
	extreme irrigation treatments
Fig.	5.19 - Simulated organ numbers for the 100% ET and 33% ET
	irrigation treatments with Kennebec120
Fig.	5.20 - Hourly time course of relative water content of
	the plant (RWCPL) and transpiration rate for the two
	irrigation regimes on day 60122
Fig.	5.21 - Hourly air temperature and evolution of the limiting
	effects of temperature and relative plant water content
	on photosynthesis rate for the two irrigation
	treatments on day 60
Fig.	5.22 - Hourly rate of assimilate transfer to growth and
	respiration and variation of assimilate-reserve level for
	the two irrigation regimes on day 60122

Fig. 5.23 - Plant water and assimilate-reserve level limiters to	
leaf and root growth for the 100% ET (left) and	
33% ET (right) irrigation treatments on day 60	123
Fig. 5.24 - Simulated final tuber and total dry weight per unit area	
and per plant as a function of plant density	126
Fig. 5.25 - Simulated time courses of leaf area index for plant densities	s
of 2.5, 5, 7.5, 10, 15, and 20 plants. m-2 and respective	
leaf area durations	126
Fig. 5.26 - Simulated seasonal time courses of daily crop growth	
rate and daily transpiration rate for 2.5, 5, 10 and	
20 plants.m ⁻² densities	128
Fig. 5.27 - Simulated cumulative soil water evaporation and plant	
transpiration for the plant densities of 2.5, 5, 10, and 20	
plants.m ⁻² fully irrigated	130
Fig. 5. 28 - Simulated time courses of WUE and transpiration-use	
efficiency for the plant densities of 2.5, 5, 10, and	
20 plants.m ⁻² and 100 % ET irrigation	130
Fig. 5.29 - Simulated influence of plant density on the weight of	
plants at successive dates from emergence.	131
Fig. 6.1 - Simulated density experiment with the White Rose and	
Kennebec cultivars	133
Fig. 6.2 - Influence of irrigation periodicity and soil texture on tuber	
yield, total dry weight and end-of-season LAI	135
Fig. 6.3 - Simulated seasonal irrigation, transpiration and evaporation	
for different irrination frequencies and two sail tyrons	125

Fig. 6.4 - Influence of planting density and level of applied water	
on tuber yield and plant dry weight	.13
List of tables	
Table 4.1 - Characteristics of the sine curves for the three	
daily periods	41
Table 4.2 Hourly proportion of total solar radiation	50
Table 4.3 - Fractions of total solar radiation absorbed by the plant	
canopy and soil surfaces on clear days	53
Table 5.1 - Chronology of D. Wolfe's field trial	95