Order Number 9019063

Depositing and eroding sediment-driven flows: Turbidity currents

Garcia, Marcelo Horacio, Ph.D. University of Minnesota, 1989

U·M·I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	
ABSTRACT	6
TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	
LIST OF SYMBOLS	
CHAPTER 1	
INTRODUCTION	
1.1 Sediment-Driven Flows: Turbidity Currents	1.1
1.2 Geological Implications of Turbidity Flows	1.5
1.3 Engineering Significance of Turbidity Flows	1.7
1.4 Field Observations of Turbidity Flows	1.9
1.5 Previous Analytical and Experimental Work	1.15
1.5.1 Analytical Studies	1.15
1.5.2 Experimental Studies	1.18
1.6 Present Study	1.20
1.6.1 Motivation	1.20
1.6.2 Objectives	1.23
CHAPTER 2	
THEORETICAL BACKGROUND	
2.1 Governing Equations for a Dilute Suspension	2.1

2.2 Vertically Integrated Balance Equations	2.4
2.3 Similarity Assumption and Slab Approximation	2.6
2.4 Closure for Theoretical Model	2.9
2.5 Spatial Development of Turbidity Currents	2.12
2.6 Supercritical and Subcritical Flows	2.14
2.7 Internal Hydraulic Jump	2.15
2.8 Bed Variation due to Sediment Erosion and Deposition	2.19
CHAPTER 3	
EXPERIMENTAL APPARATUS AND PROCEDURE	
3.1 The Flume	3.1
3.2 Measuring Instrumentation	3.3
3.2.1 Flow Velocity Measurements	3.3
3.2.2 Suspended Sediment Concentration Measurements	3.5
3.2.2.1 Well-Sorted Sediment	3.5
3.2.2.2 Poorly-Sorted Sediment	3.7
3.2.3 Salinity-Density Measurements	3.7
3.3 Instrumentation Set-up and Data Collection	3.10
3.4 Particle Size Analyzer	3.10
3.5 Sediment Materials	3.12
3.6 Experimental Procedure: Conservative Saline Currents	3.16
3.6.1 Dense Fluid and Flume Preparation	3.16
3.6.2 Preparation of Measuring Instruments	3.17
3.6.3 The Run	3.17
3.7 Experimental Procedure: Turbidity Currents	3.19
3.7.1 Currents Driven by Well-Sorted Sediment	3.19

3.7.2 Currents Driven by Poorly-Sorted Sediment	3.20	
3.8 Experimental Procedure: Eroding Saline Currents	3.21	
CHAPTER 4		
EXPERIMENTAL RESULTS: CONSERVATIVE SALINE CURREN	ITS	
4.1 Purpose of the Experiments	4.1	
4.2 Overview of the Experiments	4.1	
4.3 Flow Measurements	4.3	
4.4 Layer-Averaged Flow Parameters	4.3	
4.5 Spatial Development of the Underflows	4.8	
4.6 Characteristics of the Hydraulic Jumps	4.11	
4.7 Variation of Bed Shear Stress	4.14	
4.8 Similarity of Profiles and Other Characteristics	4.17	
4.9 Conclusions	4.22	
CHAPTER 5		
EXPERIMENTAL RESULTS: DEPOSITIONAL TURBIDITY CURI	RENTS	
5.1 Currents Driven by Well-Sorted Sediment	5.1	
5.1.1 Purpose of the Experiments	5.1	
5.1.2 Overview of the Experiments	5.1	
5.1.3 Flow Measurements	5.3	
5.1.4 Spatial Development of the Currents	5.3	
5.1.5 Characteristics of the Hydraulic Jumps	5.8	
5.1.6 Vertical Structure of the Currents	5.10	
5.1.7 Turbidites Deposited from Suspension	5.17	
5.1.8 Turbidites Deposited from Bedload	5.19	
5.1.9 Discussion and Conclusions	5.21	

5.2 Currents Driven by Poorly-Sorted Sediment	5.25
5.2.1 Purpose of the Experiments	5.25
5.2.2 Overview of the Experiments	5.25
5.2.3 Flow Characteristics	5.28
5.2.4 Vertical Sorting of Suspended Sediment	5.28
5.2.5 Variation of Turbidite Thickness and Grain Size	5.30
5.2.6 Similarity of Velocity and Sediment Profiles	5.36
5.2.7 Conclusions	5.46
CHAPTER 6	
EXPERIMENTAL RESULTS: SEDIMENT-ENTRAINING CURRENTS	
6.1 Purpose of the Experiments	6.1
6.2 Overview of the Experiments	6.2
6.3 Observations of Sediment Entrainment into Suspension	6.4
6.4 Evaluation of Sediment Entrainment	6.6
6.5 Determination of Bed Shear Stress	6.9
6.6 Characteristics of Bedforms	6.17
6.7 Removal of Bedform Effect	6.21
6.8 Conclusions	6.25
CHAPTER 7	
SEDIMENT ENTRAINMENT FUNCTIONS	
7.1 Introduction	7.1
7.2 Problem Formulation	7.1
7.3 Previous Functions	7.4
7.3.1 Einstein (1950)	7.4
7.3.2 Engelund and Fredage (1976)	7.6

7.3.3 Smith and McLean (1977)	7.7
7.3.4 Itakura and Kishi (1980)	7.7
7.3.5 Van Rijn (1984)	7.8
7.3.6 Celik and Rodi (1984)	7.9
7.3.7 Akiyama and Fukushima (1985)	7.10
7.4 Data Selection	7.10
7.5 Predictions versus Observations	7.12
7.6 Proposed Entrainment Function for Uniform Sediment	7.21
7.7 Entrainment Function for Non-Uniform Sediment	7.28
7.8 Comparison With Data From Sediment-Entraining Cu	irrents 7.37
7.9 Conclusions	7.40
CHAPTER 8	
SUMMARY AND CONCLUSIONS	
8.1 Summary	8.1
8.2 Conclusions	8.1
8.2.1 Flow Characteristics	8.1
8.2.2 Hydraulic Jump	8.3
8.2.3 Sediment Deposits: Turbidites	8.3
8.2.4 Sediment Entrainment	8.4
8.2.5 Sediment Entrainment Functions	8.6
8.2.6 Modeling Considerations	8.6
REFERENCES	9.1
APPENDIX A	A.1
APPENDIX B	B.1