Computer Methods and Advances in Geomechanics

Edited by

G.BEER
CSIRO, Division of Geomechanics
J.R.BOOKER & J.P.CARTER
University of Sydney

VOLUME 1

Published on behalf of the International Association for Computer Methods and Advances in Geomechanics by

A.A.BALKEMA/ROTTERDAM/BROOKFIELD/1991

Table of contents

Preface	VII
Keynote papers	
Analytic methods in geomechanics J.R. Booker	3
Australian advances in geomechanics E.T.Brown	15
Constitutive modelling of geomaterials: Comments on past and future Chandra S. Desai	31
Environmental geotechnology: Some pertinent considerations R. Kerry Rowe	35
1. CAD, Expert systems and software	
An expert system to choose a stress analysis program for rock excavation design M.A.Coulthard & V.Ciesielski	51
Visualization of the microstructural response of lightly-cemented granular soils under uniaxial strain conditions John J.Gill & Gregory Donohoe	57
FE analysis and visualization utilizing X-windows in a distributed supercomputing environment W.Haas & R.Brantner	65
Three dimensional color computer graphics for the subsurface ground layer around Toyohashi Makoto Kawamura, Susumu Segawa & Tomomi Arai	69
Development of an intelligent computer program for foundation design Fred H.Kulhawy & Charles H.Trautmann	75
Three dimensional modeling for geological structure by CAD system Ryohei Mura, Nobuo Hoshino & Takashi Ito	81

Image analysis techniques for determining the fractal dimensions of rock joint and fragment size distributions A.Ord & C.C.Cheung	87
Lotus 1-2-3 in permanent displacement H.V.Phuong Truong	93
Automatic mesh generation of zero thickness interface elements D.M.Potts & R.A.Day	101
Computer aided teaching in geotechnical engineering S.D.Priest, D.J.Walker & J.N.Kay	107
A constrained Delaunay triangulation algorithm for generating finite element meshes S.W.Sloan	113
A numerical database system for rock triaxial tests using a microcomputer Naohiko Tokashiki, Yasuaki Ichikawa & Toshikazu Kawamoto	119
2. Geotechnical engineering applications	
Downdrag forces in piles and pile groups Y.K.Chow & J.T.Chin	127
Performance of a pile-supported structure under strong ground motion Phillip L.Gould & Kijun Ahn	133
Pile-group settlement interaction considering soil non-linearity H.Hirayama	139
Three-dimensional finite element analysis of laterally loaded piles M.Kimura, A.Yashima & T.Shibata	145
Finite element analysis of embedded walls S.A.S. Kulathilaka & I.B. Donald	151
Analysis of novel retaining structures using explicit finite difference codes Loren J.Lorig	157
Soil-strip interaction in reinforced foundation beds Madhira R. Madhav & N. Kumar Pitchumani	165
Parametric study of deformation behavior of bored pile on a thin bearing layer Tamotsu Matsui & Kazuhiro Oda	171
Bearing capacity analysis of a raft foundation on soft clays depending on soil-structure interaction Satoru Ohtsuka & Minoru Matsuo	177
Analysis of piled strip foundations H.G. Poulos	183
Deformation analysis of improved soft ground under embankment A.Sakai, N.Miura, G.Aramaki & K.Koga	193

Mechanical behaviour of bottom ground heave due to excavation T.Tamano, S.Fukui, S.Kadota & K.Ueshita	199
Behaviour of axially loaded piles in Gibson soil L.G.Tham & Guo Dajiang	205
A new approach based on grey system theory for settlement prediction S.Zhang, J.Li & R.N.Chowdhury	211
A three dimensional nonlinear finite element analysis of stability of dam abutment by using fracture-damage mechanics model Zhou Wei Yuan, Yang Yan Yi, Yang Ro Zieng & Yan Gong Ri	217
3. Experimental studies, testing and field instrumentation	
Finite element analyses of triaxial tests with different end and drainage conditions D.W.Airey	225
Mechanics of sampling disturbances in a soft clay M.Budhu & C.S.Wu	231
Numerical modelling of dynamic compaction Y.K.Chow, D.M.Yong, K.Y.Yong & S.L.Lee	237
The structural analysis of pavements: Studies based on the measurements of surface deflections W.H.Cogill	243
Calculation and method of verification of the 3-D insitu stress tensor W.Lawrence & G.Sneddon	249
Application of a 1-dimensional cavity expansion model to pressuremeter and piezocone tests in clay A. Lee Goh & M. Fahey	255
Dynamics of SPT: Application of the method of two-point strain measurements T.Matsumoto, H.Sekiguchi, H.Yoshida & K.Kita	261
PC-based data acquisition and electrohydraulic servo loading systems in laboratory shear testing K-K.Ng & I.B.Donald	267
Design strength S _u derived from pressuremeter tests H.Ohta, A.Iizuka, A.Nishihara, R.Fukagawa & Y.Morita	273
Numerical and centrifuge modelling of large strain consolidation S.H.Toh & M.Fahey	279
Pore pressure fields around piezocone penetrometers installed in clays Andrew J.Whittle & Charles P.Aubeny	285

4. Joints, localisation and structured materials

Boundary element analysis of excavations in aelotropic rock masses H.Alehossein & J.P.Carter	293
The structure of persistent shear bands in idealized granular media J.P.Bardet & J.Prouhet	299
Rate-type and elastoplastic approaches for soil-structure interface behaviour: A comparison M.Boulon & A.Jarzebowski	305
An elastic-viscoplastic block theory for rock masses S.H.Chen & W.L.Xiong	311
Distinct elements vs Cosserat theory: A comparison for the case of an infinite shear layer S.K.Choi & H-B.Mühlhaus	315
Disturbed state concept for modelling soils and joints C.S.Desai, S.Armaleh, D.Katti & Y.Ma	321
Model of regularly jointed rock mass with consideration of the influence of couple stresses Ge Xiurun & Feng Shuren	327
The equivalent elastic properties of stratified and jointed rock masses Charles Gerrard	333
Quantifying soil properties using fractal measurements of soil microstructure Steven G. Harris & John J. Gill	339
Blasting effects in jointed rocks – New insights F.E. Heuzé, T.R. Butkovich, O.R. Walton & D.M. Maddix	347
Rank n plasticity theory and bifurcation condition Y.Ichikawa & T.Ito	353
Probabilistic joint network modelling in three dimensions including a verification P.H.S.W.Kulatilake, D.N.Wathugala & O.Stephansson	359
Modelling of sliding behaviour at rock interfaces E.C.Leong & M.F.Randolph	365
Fractals in geomechanics Charles A. Moore, Monica Krepfl, Hui-Huang A.Chyou & John Gill	371
Constitutive models and numerical analyses for inelastic materials with microstructure HB.Mühlhaus, R.de Borst & E.C.Aifantis	377
Numerical verification of sheet-pile countermeasure in soft ground H.Ochiai, S.Hayashi, J.Otani, T.Umezaki & Y.Tanaka	387
Fluid flow through patterned shear zones A.Ord	393
Numerical analysis of progressive failure in deep boreholes P.C. Papanastasiou & I.G. Vardoulakis	399

On mechanics of jointed media: Masonry and related problems S. Pietruszczak	407
Approximate equivalent moduli for use in the modelling of mining in elastic layered strata J.A. Ryder & M.U.Ozbay	415
Localization examined as a function of mesh configuration and load step Suren Saxena, T.S. Hsu & C.T. Liu	421
A damage model for discontinuous rock mass based on thermodynamic principles M.Stumvoll, T.Kyoya, Y.Ichikawa & G.Swoboda	427
Analysis of a dam foundation with jointed rock mass A.Varadarajan & Anjani Kumar	435
Continuum models for localized deformations in pressure sensitive materials I.Vardoulakis, HB.Mühlhaus & E.C.Aifantis	441
A finite element approach to analysing localization and post-critical behaviour in rock <i>P.M.Warburton</i>	449
Effects of anisotropy on three dimensional excavation analysis of jointed rock masses Tadashi Yamabe, Masanobu Oda, Keisuke Maekawa, Yoshio Ishizuka, Hiroo Kumasaka & Hiroyuki Tada	455
5. Slopes, stability and distinct element methods	
Analysis of seepage failure of sandy soils, a coupling problem approach A.Asaoka & T.Kodaka	
An integrated system for the stability of rock slopes Ö.Aydan, Y.Ichikawa, Y.Shimizu & K.Murata	469
Upper bound solutions to soil stability problems via general wedge methods P.S.K.Giam & I.B.Donald	475
Simulation analysis of dynamic nonlinear behavior of underground structures by the extended distinct element method <i>M.Hakuno & T.Yamamoto</i>	481
Nonassociated flow and instability of slopes Poul V.Lade	487
Numerical analysis of the collision between a falling rock and a cushion by distinct element method <i>H.Masuya & Y.Kajikawa</i>	493
Slope stability analysis by shear strength reduction technique T.Matsui & K.C.San	499
Open pit toppling failures: Experience versus analysis Christopher M.Orr, Christopher F.Swindells & Christopher R.Windsor	505
Simple shear simulations of sand using D.E.M. Sumia Sangada, Tai P.S. Pradham & Vachinori hyasaki	511

The stability of a square tunnel in a purely cohesive material whose strength increases linearly with depth S.W.Sloan & A.Assadi	517
Analyses of active earth pressure problems based on simple constitutive equations for granular materials K.Ugai	527
6. Constitutive modelling	
Finite element analysis with strain-softening constitutive model Toshihisa Adachi, Feng Zhang, Fusao Oka & Atsushi Yashima	535
Double structure model for the prediction of long-term movements in expansive materials E.E.Alonso, A.Gens & A.Lloret	541
Partially drained behaviour of soft clays and its application A.Asaoka & M.Nakano	549
A model for recent history and non-linearity in the stress-strain behaviour of overconsolidated soil J.H.Atkinson & S.E.Stallebrass	555
An anisotropic stress-strain model for sand Upul D.Atukorala & Peter M.Byrne	561
Determination of constitutive parameters for soils based on optimization K.Axelsson, Y.Yu, K.Runesson & M.Klisinski	569
Numerical model for elastic-viscoelastic-viscoplastic behaviour of bituminous concrete P.G.Bonnier & E.Troost	575
Use of incrementally non linear constitutive equations by the finite element method Marc Boulon, Félix Darve, Hamid El Gamali & Jean Pierre Touret	581
Evolution of shear modulus and fabric during shear deformation Yao-Chung Chen & Hsiu-Yen Hung	587
On the mechanics of state parameter models for sands I.F.Collins	593
Constitutive law for granular skeleton materials: Description of the anisotropic and viscous effects H.Di Benedetto & O.Hameury	599
A comparative study of incremental non-linear constitutive equations T.Doanh & P.Royis	605
Validity of using triaxial test data for calibration of constitutive relationships A.B. Fourie	611
Degradation instabilities in brittle material structures	617

Noncoaxiality and stress-dilatancy relations for granular materials Marte Gutierrez, Kenji Ishihara & Ikuo Towhata	625
Elastoplastic constitutive modelling for unsaturated soils Yuji Kohgo, Masashi Nakano & Tsuyoshi Miyazaki	631
Constitutive model for frictional materials with application to concrete Poul V.Lade & Moonkyum Kim	637
Constitutive modeling of Ottawa sand by strain path tests John F.Lupo, Nancy C.Patti & Thomas W.Thompson	643
Constitutive model for coal under high stresses and temperatures H.Meißner & F.Rogmann	649
Kinematic hardening model for clay in three-dimensional stresses T.Nakai & T.Hoshikawa	655
A generalized plasticity model for anisotropic behaviour of sand M.Pastor	661
Microplane constitutive model for inelastic behavior of soils Pere C.Prat & Zdeněk P.Bažant	669
A three dimensional constitutive elasto-plastic model for sands following the 'Spatial Mobilized Plane' concept F.M.Salgado & P.M.Byrne	675
Creep behavior of fine-grained ocean sediments A.J.Silva, WM.Tian, M.H.Sadd & H.G.Brandes	683
A micromechanical theory of plastic non-local behavior of granular media K.C.Valanis & John Gill	689
MIT-E3: A constitutive model for overconsolidated clays Andrew J.Whittle	697
Numerical solution of ultimate bearing capacity of shallow strip footing on anisotropic and nonhomogeneous clays Xu Gancheng, Zhen Yingren & Xie Dingyi	703
Constitutive modeling of Pueblo sand M.Musharraf Zaman & M.Omar Faruque	709
Multi-yield surface theory for soils Zheng Yingren	
7. Dynamics and cyclic loading	national anades
Vertical vibration of single piles in radially inhomogeneous soil Huei-Tsyr Chen & Gin-Der Chang	722
Influence of radiation damping on pile driving Nawawi Chouw & Günther Schmid	729

Evaluation of the inelastic response of an axisymmetric foundation to impact loading A.J.Deeks & M.F.Randolph	735
A numerical model for the stability analysis of off-shore embankments in storm wave conditions G.P.Giani & A.M.Ferrero	741
Thin layered element method for estimation of ground vibrations due to traffic loads Toshokazu Hanazato, Keizo Ugai, Michio Mori & Rikuo Sakaguchi	747
Model of cyclic behaviour of calcareous sand and its application to wave loading W.S. Kaggwa & J.R. Booker	753
Vibrations of the ground surface around rigid structures brought about by waves radiated from an adjacent source <i>Y.Kitamura</i>	759
Numerical investigation on the deformation of a marine foundation subjected to caisson-composite breakwater construction M.Mimura, T.Shibata & S.Ohmaki	765
Coupled finite and infinite elements in the dynamic analysis of geotechnical structures <i>C.S.Pan</i>	771
The effect of residual stresses in interpreting stress wave data M.F.Randolph	777
Model for cyclically loaded clay based on critical state theory E.J.Sellers & F.Scheele	783
Finite element analysis of pore pressure build-up beneath offshore gravity structures E.X.Song & A.Verruijt	789
Analytical formulations and a numerical procedure for analysis of non-uniform piles subject to vibration H.H.Vaziri & J.Xie	795
Surface Green's functions for continuously nonhomogeneous soil C.Vrettos	801
Calculation of bottom plate of turbine framed foundation considering frame foundation/soil interaction J.R.Zhang & B.Z.Kang	805
Blasting induced vibrations in discontinuous rock G.Zenz, Li Ning & G.Swoboda	811
Analytical theory of seismic pore pressure generation-dissipation in saturated sand layer Zhang Jianmin, Xie Dingyi & Liu Jiapei	819
Author index	